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Abstract—The paper investigates the stability problem for a class of non-stationary mechanical
systems under the action of linear dissipative and nonlinear potential forces. It is assumed
that the system has a changeable structure. Switching between different operating modes is
associated with a change of the potential of the system, as well as with discontinuities of non-
stationary coefficients present in the system. Two approaches to the analysis of the stability of
such systems are considered. One is related to the construction of a discontinuous Lyapunov
function, the other is based on the construction of a continuous Lyapunov function. The paper
also studies the effect of non-stationary perturbed forces on the stability. The peculiarity of the
work is that the non-stationary parameters both in the system itself and in the perturbations
can be unbounded with respect to time, or, on the contrary, they can arbitrarily approach to
zero. Thus, the problem arises of comparing the rate of growth or decrease of all these non-
stationarities in order to obtain conditions that guarantee the asymptotic stability of the given
equilibrium position of the system.

Keywords: nonlinear non-stationary mechanical systems, switching, asymptotic stability, per-
turbations
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1. INTRODUCTION

In recent decades, the theory of differential systems with discontinuous right-hand sides has
been actively developing. Such systems find many practical applications in various fields of human
activity. A.M. Lyapunov’s methods, developed by him for analyzing the stability of continuous
systems, can be successfully extended to discontinuous systems. In particular, significant results in
this direction were obtained by E.A. Barbashin, A.I. Lurie, A.M. Letov, N.N. Krasovsky, V.I. Zu-
bov, A.F. Filippov, S.V. Yemelyanov, V.M. Matrosov and many other famous scientists (see, for
instance, [1]). An important class of discontinuous systems are switched systems capable to operate
in different modes [2]. The activation rule of a particular mode is set by some special function
called the switching law. A lot of works have been devoted to the problem of assessing the effect
of switching on various dynamic characteristics of the investigated systems, including in recent
years (see, for instance, [2-11] and references therein). So, currently relevant research areas related
to the analysis of the influence of switching in combination with some other factors such as non-
stationarity, perturbations, delay, randomness, impulse effects, complexity and hybridity of internal
relationships between various variables in the system, etc. The switching laws, depending on both
time and current state vector of the system, are considered. Approaches to the construction of
both a single Lyapunov function for all modes and a multiple Lyapunov function formed from
partial functions corresponding to different modes are actively developing. Non-stationary switched
systems are of particular interest [5-7]. Here, the smooth dynamics of the system caused by the
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continuous change of non-stationary parameters are superimposed by sharp fluctuations caused by
discontinuities of non-stationary parameters or a change in the structure of the system itself. The
peculiarity here is that the number of possible operating modes of the system becomes, generally
speaking, infinite. The analysis of such systems becomes more complicated if the non-stationary
parameters in the system can be unbounded or inseparable from zero.

An important class of dynamic systems are mechanical systems. It is known that the presence of
non-stationary parameters in mechanical systems can lead to fundamentally new dynamic effects
[12-14]. In this paper, we study one class of nonlinear mechanical systems with discontinuous
non-stationary parameters and switched force fields. The switching law is assumed to be time-
dependent. Thus, the right-hand sides of the considered system turn out to be discontinuous with
respect to time and continuous with respect to the state vector. Different ways of constructing a
suitable Lyapunov function are proposed. The most natural approach here is associated with the
use of separate continuous Lyapunov functions on smooth intervals of the system functioning and
with the construction of an itog discontinuous Lyapunov function from them on the entire time
interval. However, such an approach can lead to rather conservative stability conditions. Therefore,
the paper also develops an approach to constructing a single continuous Lyapunov function for the
entire hybrid system. In addition, the paper examines the effect of non-stationary perturbations
on the stability of the given equilibrium position of the mechanical system. It is important to note
that the desired conditions for perturbations, in general, will depend on the restrictions imposed on
the switching law in the original system. The results obtained in this work can be used to analyze
the robustness of non-stationary switched systems.

2. STATEMENT OF THE PROBLEM

Consider the non-stationary mechanical system under the influence of linear dissipative forces
and nonlinear potential forces

dor or _ . oL, (q) O

Here q € R™ and q € R are vectors of generalized coordinates and velocities, respectively; kinetic
energy T'=T(q,q) of the system is set by quadratic form T'(q,q) = %qTA(q)q with a symmetric
and continuously differentiable for q € R™ matrix A(q); o =o(t) : [0,+00) =S ={1,...,N} is
a piecewise constant function defining the switching law of potentials in the system; potentials I1¢(q)
are determined by continuously differentiable for g € R™ homogeneous functions of the order p + 1,
uw>1,s=1,...,N; elements of symmetric matrix B(¢) are piecewise continuous for ¢ > 0; scalar
function p(t) is piecewise continuously differentiable for ¢ > 0. Without loss of generality, we
suppose that the set of break points of function p(t) and its derivative is contained in the set of
break points of function o(t) (otherwise, we combine these two sets into one, and consider this new

set as a sequence of switching moments for potential forces).

Following the standard assumptions, we suppose that the kinetic energy satisfies for all q € R",
g € R" the estimates

ky lall® < T(a,a) < ko llall?,

IT(q,q) H . H IT(q,4) H 2
— <k . |—— <k ,
[T < kel [T <l
where ki1, ko, k3, k4 are positive constants.

Thus, the dynamics of system (1) is influenced by both smooth changes of non-stationary pa-
rameters and sharp jumps caused by discontinuities of non-stationary parameters or a change of
potential.
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STABILITY ANALYSIS OF NON-STATIONARY MECHANICAL SYSTEMS 205

The purpose of the article is to establish conditions that guarantee the asymptotic stability of
the equilibrium position q = g = 0 of system (1), as well as to assess the effect on the stability of
possible non-stationary perturbed forces. It should be noted that a switched system of form (1)
with stationary parameters was studied in [15]. There, switching took place between a finite set of
possible operating modes of the system. The presence of non-stationary parameters with, generally
speaking, an infinite number of break points complicates the problem, because now the number
of possible modes becomes infinite. In addition, if these non-stationary parameters can increase
unboundedly or, conversely, approach to zero arbitrarily close, then the results obtained in [15] will
not be applicable to such a non-stationary system.

3. USING THE DISCONTINUOUS LYAPUNOV FUNCTION

Let the sequence {7;}1%, where 0 = 79 < 71 < ..., determine the switching moments of potential
forces. We suppose that the number of these switching moments is finite on any finite time interval,
while their total number on the interval [0,+00) is infinite. For certainty, we assume that the
elements of matrix B(t), as well as functions o(t) and p(t) are right-hand continuous at their break
points.

Next, we will use the following assumptions.
Assumption 1. For all £ > 0 and z € R™ the inequalities

bi(t)||zl* < 2" B(t)z < ba(t)|z]

are valid, where by (), ba(t) are piecewise continuous positive functions with positive left-hand limits
at break points.

Assumption 2. Potentials II;(q) are positive definite.
It follows from Assumption 2 that there exist positive constants cqs, cos such that

ClsHQH#-H < Hs(q) < CQSHqH#+17 S = 17 e 7N7

for all q € R™.
Assumption 3. Let the following conditions be fulfilled:
1) function p(t) is positive for all ¢ > 0, and p(r; —0) > 0,7 =1,2,...;
2) the inequality

is valid for all ¢ € (73, Ti+1), @ =0,1,.... Here I = const € (0, 1).

If parameter p(t) increases at some time point ¢, then the inequality in condition 2) of Assump-
tion 3 will be automatically fulfilled for this moment. Thus, this inequality impose a restriction
only on the permissible rate of decrease of parameter p(t).

Construct the discontinuous Lyapunov function

V(ta,d) = %“q’ &) + Io(q) + r1(6) ng—Z, 2)

where r is a positive constant, (¢) is a piecewise continuously differentiable positive for ¢ > 0
function. As in the case of function p(t), we assume that the discontinuities of function ~y(¢) and
its derivative can occur only at the break points of function o(t).
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206 PLATONOV

Let us differentiate function V' (t,q,q) with respect to solutions of system (1) on the intervals
(T4, Tit1), © = 0,1,.... We obtain

: 1, _ _
Vi = ~5d BOa—r®p@)(u+ D" L (a)
oT oT\T o
—ry() |lal* Tt qTB(#)¢ ) lgl* gt == ¢ (—) — "q) e
@ el a BO)a+ ) lal* " a 5o+ ) (56 ) 5 (lal* T a)a
p/(t) . / 1 70T
- T(q,q) +ry'(t) la[* " q 5=
(0 (a,q) + () |lal 2q
Then for q,q € R", t € (74, 7i+1), i = 0,1,..., one can find the estimates

kl -2 1 . .
MHQH + et all“ Tt = ey (ks lall llall” < V(t q,4)

ko ..o 1 :
< E2 gl 1 o Ll 5 08 Bl

Iy < =28 il = 2 (0p(0 0+ sl

+ry(0)ba(t) lal lall” +ry() ks llal® lall” +ry(t)ksa [l la) ™"

/
—p (t)ko . .
+ max {o; L el + vl @) ksl lal
P*(t)
Here a is a positive constant chosen so that for all @ € R™ the condition H (||qH“_1 q) H < allq|[Ft

takes place.
For further analysis, we will need one auxiliary result.
Let the function
W (t,z) = —a(t)z] — B(t)z3 + d(t)z1'z)

be given, where t > 0, z = (21,22)", 21, 20 € [0,+00); p and ¢ are positive constants; v and v are
nonnegative constants, u + v > 0; functions a(t), 5(t), d(t) are piecewise continuous and positive
for t > 0.

Lemma 1 [16]. Let the inequality

u v
—+->1 3
oty (3)

be valid and there be a constant € satisfying the condition

(o),

max{0; v — ¢} <& < min {v; v —
p

such that function
t al(t)\ ¢
ot (50 @
is bounded fort > 0. Then for any M € (0,1) one can choose H > 0 such that the estimate
W(t,z) < M (—a(t)z] — B(t)23) (5)
will be valid fort >0, ||z|| < H.
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STABILITY ANALYSIS OF NON-STATIONARY MECHANICAL SYSTEMS 207

Remark 1. Tt is easy to see that if function «(t)/B(t) is bounded from above for ¢ > 0, then
it is sufficient to check the boundedness of function (4) in conditions of Lemma 1 only for ¢ =
max{0;v — ¢}. If function a(t)/B(t) is bounded from below by a positive constant for ¢t > 0, then
it is sufficient to check the boundedness of function (4) only for ¢ = min{v;v — (p — u)q/p}. If
inequality (3) is replaced by equality and we assume that function (4) is bounded from above on
the interval [0, 400) by a sufficiently small positive constant, then for some M € (0, 1), estimate (5)
can be obtained for all t > 0, z1, 23 € [0, +00).

We apply Lemma 1 to the estimates obtained earlier for Lyapunov function (2) and its derivative
with respect to solutions of system (1). For any values of a; € (0,1) and as > 1 one can choose
function v(t) and positive constants 7, ag, ag, H so that

/ﬁ .2 _|_1> . k’2 .12 +1
ar | — llall” + cio [lall” <V(t,q,9) <a (—q + co0 || ) 6
l(p(t) lall® + e1q llal (ta, @) < ax (S 147 + 2o 1l (6)

for t >0, |(a",2")"|| < H,

Iy < —as (20 Jal? + @)+ Ve lal) < —adOVHSa) ()

for t € (15,7i11), i =0,1,..., |[(qT,z")T|| < H. Here z=¢/\/p@), £ = (u—1)/(u+1), \t) =
min{by (t); v(t)p(t)}. Really, according to Lemma 1, in order to obtain estimates (6), (7) it is
required that the functions

b3(t) v(t) p(t)
(v (1))
SO0 )

be bounded for ¢t > 0. To achieve the boundedness of functions (8), it is sufficient to construct
function v(t), according to the condition

0.< () <V min {1/y/p(0): (/B0 b ®)/pl0) ) for £ 0 (10)

where N is a positive constant. The boundedness of functions (9) will be guaranteed, for instance,
if to construct function v(¢) in the form of piecewise constant function (then we have ~/(t) = 0 for
t e (7’,;,7‘2'_1_1), 1 =0,1,.. )

Assume
;= a2 max ko p(7i = O); G20(n) , 1=1,2,....
a kip(ti)  Cio(r—0)

Then for ||(qt,z1)T|| < H we have
V(Tia(LQ) < %ZV(TZ _07q7 q)? 1= 1727"" (11)

For any t >ty > 0 one can find positive integer m and nonnegative integer k such that tg €
[Tm—1,Tm), t € [Tm—14k> Tm+k)- S0, we have that the value of m = m(ty) is defined by the choice
of tp, whereas the value of k = k(ty,t) is equal to the number of switching moments of potential in
the system on the interval [to, t].
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Construct auxiliary function (g, t) by the following formulas:

t

U(to,t) = /)\(7') dr for k=0,

to
Plt0,1) = G- sm 100 [ AT
to
t

k—1 Tm+j

—|—Z(mn+j-..%m_1+k)_5 / A7) dT + / Ar)dr for k=1,2,....

i=1 Tin—14j T —1+k

Function v (to,t) is positive and piecewise continuous on the interval [ty, +00). Switching moments
of potential forces are, in general, the break points of this function. Note that function ¥(to,t) for
some fixed value of t( differs from function (0, ¢) by shifting by a constant dependent on the choice
of ty. For the constructing function (0, ¢) one should set in the formulas written out above ty = 0,
m = m(0) = 1, and define k = k(0,t) as the number of switching moments on the interval [0, ¢].

Consider the solution (q(t),q(t)) of system (1), starting at time moment ¢, > 0 from the point
(do, o) such that ||(qf,zd)T|| < H (here zg = ¢o/+/p(to)). By integrating differential inequali-
ties (7) and using conditions (11), one gets that, if on the interval [t(,?] the solution remains in the
domain [|(qT,z")T|| < H, then the estimates

V=it a(t),alt) = V= (to, a0, o) + as Ed(to,t) for k=0,
V_g(tvq(t)vq(t)) = (%m---%m—1+k>_€ V_é(t(])quqO) +a4£w(t07t) for k= 1>27"' 3

hold.

Then, taking into account inequalities (6) and doing the same reasoning as in proving Theorem 1
from [17], we come to the following result.

Theorem 1. Let Assumptions 1-3 be fulfilled and estimates (6), (7), (11) be constructed. If
¥(0,t) — 400 and p~&(t)(0,t) — +oo as t — 400, then the equilibrium position q = ¢ =0 of
system (1) is asymptotically stable.

Remark 2. Conditions of the asymptotic stability formulated in Theorem 1 can be replaced by
a coarser but simpler discrete version. Denote

k—1
Nio= inf A(t), pe= sup p(t), Yp= (Gtit1...00) "N, k=1,2,....
[7i>7ita] [ThsTh+1] i=0
Here T; = 1,41 — 7, i =0,1,.... Then, for the asymptotic stability of the equilibrium position

q = =0 of system (1) it is sufficient to fulfill the conditions: 5 — 400 and p;;éibk — +00 as
k — 400. Thus, found conditions of the asymptotic stability are determined through relations
linking the lengths of the intervals between successive switches of potential forces in system (1),
the magnitude of jumps in the Lyapunov function caused by discontinuities of parameter p(¢) and
potential changes, as well as the rate of change of functions by (t), ba(t), p(t).

Now, let us suppose that considered system is under influence of some perturbed forces:

dor aT . O, (q) :

Assume that function Q(t,q,q) is defined in the region
t>0, [(a"a")" <A (13)
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and satisfies there the conditions guaranteeing the existence, uniqueness of the solutions of sys-
tem (12) and their continuous dependence on the initial data.

Let estimate
1Q(E a, q)|l < h@)]all* +g@)lal”
be valid in region (13), where w and 7 are positive constants, h(t) and g(¢) are nonnegative piecewise
continuous functions. Note that functions h(¢) and g(¢) can be unbounded on the interval [0, +00).

Sufficient conditions of the asymptotic stability of the equilibrium position q = ¢ = 0 of system
(12) can be obtained, as before, by applying Lemma 1 to Lyapunov function (2) and its derivative
with respect to solutions of system (12).

Corollary 1. Let conditions of Theorem 1 be fulfilled. If
w >, n>1, (14)

and, moreover, functions

h(t) g(t) p=D/2(2)
xi(t) = 172 ; xa(t) = B (15)
Y2(8) by () p(t) 1)
are bounded on the interval [0,400), then the equilibrium position q =q =0 of system (12) is
asymptotically stable.

Really, with the assumptions made in Corollary 1, the application of Lemma 1 will again lead us
to estimates of form (6), (7), (11), and accordingly, the fulfillment of the conditions of Theorem 1
will guarantee the required property for the perturbed system.

If some of functions (15) are unbounded on the interval [0, +00), then the approach proposed
in [18] can be used to establish the conditions of the asymptotic stability. In [18], continuous
Lyapunov functions were used. We show that the application of discontinuous Lyapunov functions
is also acceptable within the framework of this approach.

Corollary 2. Let conditions of Theorem 1 be fulfilled. If inequalities (14) are wvalid, and the

tendencies
Xi(t) = x1(t) =@ W/ (0,8 -0 as t— +o0,
Xo(t) = x2(t) = (7V/CO(#) 0 as t— +oo

hold, then the equilibrium position q = q = 0 of system (12) is asymptotically stable.

The proof of Corollary 2 is given in the Appendix.

Example 1. Let Assumptions 1-3 be fulfilled, and there exist positive constants L, Lo, L3, L4
and ¢ such that the inequalities

thgp(t)gLQt, Lgﬁgbl(t)gbg(t)<L4\/Z for t}f

are valid. Then, by choosing v(t) = N/,/Tit1 fort € [7;,7i41) (N = const > 0),7 =0, 1,..., one gets
that functions (8), (9) will be bounded. Note that, in the considered case, p(; —0)/p(7;) < Lo/Ly
for all values of index i such that 7; > £. Hence, there exists sz > 1 such that s < 2, i =1,2,....
We have

A(t) = min {Lg\/i; NL, t/q/TH_l} > min{Ls; NLi}t/\/Tit1

for t € [13,Tit1), T = t. Applying Theorem 1, we obtain that for the asymptotic stability of the
equilibrium position q = ¢ = 0 of system (1) it is sufficient to fulfill the condition

1 k—1

5— Z %_f(k_z)w E — 400 as k — +o00.
Tpa1 i=0 Ti+1
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210 PLATONOV

Assume, for instance, that T; = const > 0,7 =0, 1,... (i.e. switching of the potential forces occurs
at fixed time intervals). Then, the found condition of the asymptotic stability will be fulfilled, if
£ < 1/2,ie. if u < 3. In this case, there is a constant Ls > 0 such that ¢(0,t) > Ls\/t for t > t.
Therefore, according to Corollary 2, the asymptotic stability of the given equilibrium position will
be preserved for perturbed system (12), if inequalities (14) are valid and tendencies

wHp—2 _ nt4€—26n—1

h(t)t 2=0 — 0, g(t)t i€ —0 as t— +oo

hold.

4. USING THE CONTINUOUS LYAPUNOV FUNCTION

The presence of multipliers s, ¢ = 1,2,..., in estimates (11) is caused by discontinuities of
Lyapunov function (2), and, in Theorem 1, it can lead to rather conservative restrictions on the
switching law of potential forces. In this section, we construct a continuous Lyapunov function for
the study of the asymptotic stability of the equilibrium position q = ¢ = 0 of systems (1) and (12).

Let us replace Assumption 2 with a weaker one.

Assumption 4. Potential II;(q) is positive definite.

Taking into account Assumption 4, we obtain that there exist positive constants ci1, Cas, C3s,
s=1,...,N, such that for all q € R” the inequalities

Cll“q“u+l < Hl(q) < 021HqHN+1’ ‘Hs(q)| < 628||q||u+17 S = 27 .. 7N7

H oll,(q)
dq

H <esllalf, s=1,...,N,

are valid.

For example, one can suppose that some stabilizing control is active for o(¢) = 1, and this control
is deactivated for o(t) # 1. Then it is necessary to find a ratio between the lengths of the intervals
of activity of the control and the lengths of the intervals for deactivating it, which guarantees the

preservation of the asymptotic stability of the given equilibrium position. Let the sequence {%Z-};-';OS,
where 0 = 7p < 71 < ..., set the switching moments in which the value of ¢(¢) changes from 1 to

some other, or vice versa. For the definiteness, we assume that o(t) =1 for t € [Ty}, T2j4+1), and
O'(t) #1forte [7:2j+177~—2(j+1)); j=0,1,....

Instead of Assumption 3, we will use the following assumption.

Assumption 5. Let the following conditions be fulfilled:

1) function p(t) is positive for t € [Ty;, T2j4+1), and p(T2j41 —0) >0, j =0,1,...;

2) for all t € (T2, To(j4+1)) the inequality

is valid and, moreover,

l
Toir1 — 0) — p(Tos < — (7o — Toit1 To(i inf bi(t).
P(Toj+1 — 0) — p(Tagjs1)) < T ( 2(j+1) — T2+ ) P(Ta(j41)) rari ) (t)
Here | = const € (0,1), 7 =0,1,....
Condition 2) in Assumption 5, imposes a restriction on the permissible rate of decrease of
parameter p(t) at o(t) =1, as well as on the permissible decrease of the value of p(t) from the
moment of deactiving the mode o(t) = 1 until the moment of activating this mode again.
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STABILITY ANALYSIS OF NON-STATIONARY MECHANICAL SYSTEMS 211

Construct continuous function p(t) such that p(t) = p(t) for t € [T2;, T2j+1), j = 0,1,.... On the
intervals [To;11,T2(j+1)), J = 0,1,..., one can determine function p(t) as linear (i.e. the continuous
pieces of function p(t) corresponding to the mode o(t) = 1 are “glued” using straight lines).

Let us construct continuous Lyapunov function

1 oT
—T : 1I X p=1 _TY+
P (q,q) + i(a) +r5(@) [all" " a o

where 7 is a positive constant, 4(t) is a continuous piecewise differentiable positive for ¢ > 0 function.

V(t,q,q) = (16)

On the intervals [To;,72j+1), 7 =0,1,..., we find function 7(¢), as in the previous section of
the paper, for instance, in form of constants satisfying estimate (10). Define function ¥(¢) by
continuously “gluing” the constructed pieces of found function ~(¢) so that the condition

0<A(t) <N min{1/\/%; bl(t)/ﬁ(t)} for >0

is fulfilled. On the intervals [Toj, 72j+1), 7 = 0,1,..., this condition follows from (10), therefore,
it is enough to “glue” 4(t) in such a way that the specified condition is preserved on the intervals
[Toj+1,To(j+1)), 3 = 0,1,.... Given the continuity of function p(¢) and the piecewise continuity of
function by(t), this can obviously be done if additional requirements:

. b1(Toj+1) - (a1 —0)
V(Foigr —0) S N ——L22_ 0 ~(Fy, <N———— i=0,1,...,
( 2541 ) p(7-2j+1 — 0) ( 2(j+1)) p(TQ(j+1))
are imposed on the choice of ().
Then, applying Lemma 1, as before, we get the estimates
ks 1
i (Nl + e fal ™) € Vi) < (S5l +ean o). )
(p( t) p(t)
for t >0, ||[(q%,20)T|| < Hy, and
> _(bi(t) :
Pl iomy < = (0 12+ 79000+ Den 0l ) < -aMOF*E(ta.a). (19
fort € (7oj, 72511), 5 = 0,1,..., (¥, 2")T|| < Hy. Herez = ¢//p(t), Hy, Gy, aa, Gz, a4 are positive

constants, \(t) = min{b; (¢); ( )p(t )} E=(pn—1)/(n+1).

Differentiate Lyapunov function (16) with respect to solutions of system (1) on the intervals
(7:2j+1, 7:2(]'_;,_1)), j = 0, 1, .... We obtain

Iy o = 5" BIOG = r0p(0 -+ 1) [l T )

oT oT\" 0
-~ p—1 T . ~ p—1 TY+L ~ et v pn—1 .
P ol Q" BOa -+ i ol a5 + 30 (52) g (lal " a)a

P'(t) : o 1 19T p@).p0l,(q) . rIlli(q)
- T(a,q) +r7' () lal" " a” - —=X4q +4q :
Py GOTTOlTa G = FH T g 54
Then for q,q € R", t € (Toj41,To(j+1)), J = 0,1,..., taking into account Assumption 5, we have

the estimate

VI oy < (1= D21 + r3OIpO] 1+ Dea Ll

+ 3tk llal® lall” + r () ksa [l [lal*

5 Ip(t)]
+(m<t>b2<t>+r| Ok + 2
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Next, use the Jensen inequality

2izg = (%) (0“/”22)v < u% + 00"V 2,

which is valid for any positive values of 2z, zo, u, v, 80, if u+v = 1.
Choose some constant L > 0 satisfying the condition

—(1—1)+1/(2L) < 0.

Then there exist Hy > 0 and as > 0 such that for ¢t € (T2j415 T2(j+1)), 3 = 0,1, (™, 20T < Hs
the following estimates are valid:

Vi o) < MOl < ash(6)V (2, q.4). (19)
Here
i o~ £ ~ ~ lp(t)] 2@
1) = OO+ Deas + 5 (P3O0 + 17 Ok + Ellless +en ) £

Construct function A(t) according to the rule: A(t) = asA(t) for t € [Taj, Toj11), A(t) = —asA(t)
for t € [Toj41,Togj+1))s 3 = 0,1,.... Denote ¥(tg,t) = ftf) A(7)dr for t > tg > 0. Then we have the
theorem.

Theorem 2. Let Assumptions 1, 4, 5 be fulfilled and estimates (17)—(19) be constructed. If
U(0,t) — 400 and p=§(t)¥(0,t) — +o0 as t — +o0, then the equilibrium position q = =0 of
system (1) is asymptotically stable.

Remark 3. All constants present in formulas (17)—(19) can be evaluated and chosen in a simple
way. Thus, the verification of the asymptotic stability conditions determined by Theorem 2 reduces
to the analysis of the behavior of the given functions p(t), bi(t), ba(t), as well as constructed
auxiliary functions p(t), v(t), 7(t). As in the previous section of the article (see Remark 2), to
facilitate calculations, all these functions can be coarsened with constants on each from the intervals
[TisTi+1), © = 0,1,.... Then we come to a coarser, but simpler discrete version of the asymptotic
stability conditions.

Ezample 2. Let Assumptions 1, 4, 5 be fulfilled, and there exist positive constants Lq, Lo, Lg,
L, and ¢ such that the inequalities

Lyt Sp(t) < Lyt for te [7:2]'77:2]'4-1)7 7:2]' > tA,
LyVt<bi(t) <bg(t) < Ly vVt for t>1

are valid. Then we obtain that Lt < p(t) < Lot for t >t. Choose 7(t) = N/\/Fj11 for

t € [T2j,T2j+1) (N = const >0), j =0,1,.... In the considered case, for the determination of con-
tinuous function (t) it is sufficient “to glue” constructed pieces of function ~(¢) by straight lines
on the intervals [T2j11,To(j+1)); 5 = 0,1,.... Then, we get estimates (17)-(19). Constants in these

estimates can be found for concrete given system (1) using both analytical and numerical methods.

Now, consider perturbed system (12).
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Corollary 3. Let conditions of Theorem 2 be fulfilled. If inequalities (14) are wvalid, and the
tendencies

Y@=/ (0, 8) 5 0 as t — +oo,

&@:WA@ﬂ/ﬁwhﬁﬂrﬁOast%+w

T

g(t) P2 (t)

U=0=D/2600,4) 50 as t— +oo,
bi(t) ©.%)

d2(t) =
@®:W4@0/®MMﬁMW%Oast%+m
T

hold (here T is a positive constant such that U (0,t) >0 fort> T), then the equilibrium position
q = q = 0 of system (12) is asymptotically stable.

The proof of Corollary 3 is given in the Appendix.

5. CONCLUSION

The paper considers various approaches to assessing the effect of switching, caused by both
structural changes in the mechanical system and discontinuities of non-stationary coefficients, on
the stability of a given equilibrium position. Since the choice of a suitable Lyapunov function,
as a rule, is based on the structure and coefficients of the system, this leads us to construct,
generally speaking, a discontinuous Lyapunov function. Taking into account the jumps made by
the Lyapunov function at the break points can impose too strict restrictions on the permissible
switching laws. Therefore, the possibility of constructing a continuous Lyapunov function is of
particular interest. In addition, in the work, the effect on the stability of possible non-stationary
perturbations acting on the system was investigated. It is shown that the known methods previously
applied to smooth systems can be adapted to discontinuous systems. Note that the restrictions on
the perturbations depend, generally speaking, on the restrictions on the switching law in the initial
mechanical system.
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APPENDIX

A.1. PROOF OF COROLLARY 2

Find the derivative of Lyapunov function (2) with respect to solutions of system (12) for ¢ €
(15,7i41), i =0,1,.... If | (q*,2D)T| < H and ||(q*,q")"|| < A, then we obtain

sy < —as (2 a1 + 1 0p(0) s+ Vs )
+ (S5 lall+ 0lal) (olal + oo lal-
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Let us show that constants Dy > 0, D > 0 and £ > 0 can be chosen so that if

. 1 . _
to > t, ) la(to)||* + [lalto) ' < Do =15(0, to), (A1)
then
1 . _
o0 la@®® + lla®)|“* < Dy=e(0,t) for t > to. (A.2)

Here (q(t),q(t)) is a solution of system (12). Really, set the specified constants, according to the
conditions

Dy <D, —(a2€Dg) *+ (as€)/2 <0, —(a1éD)™ + (as€)/2 >0, (A.3)
D0y, =2/ (=10 ¢) + Dp(t) = 4(0,8) < A% for t > 1, (A4)

DY WA y=2/=0 (0, ) 4+ D~YE(0,8) < H? for ¢ > 1, (A.5)

max {Y1(t); X2(t)} <d for t>1%, (A.6)

where ¢ = max{kg; ca1; ...; can'}, ¢ = min{ky; c11; ...; cin}, d is a positive constant. Conditions

(A.3)-(A.6) are compatible. At first, one can choose constants Dy and D according to inequalities
(A.3), then constant # can be chosen according to conditions (A.4)—(A.6).

Let the initial data of the solution (q(t),q(t)) satisfy the inequalities (A.1). Suppose that there
exists t; > to such that inequality (A.2) turns into equality for ¢t = ¢;. Applying Lemma 1, we have
that, if constant d in (A.6) is chosen sufficiently small, then estimates

. as bl(t)
Vigg < - (

2 Al +ry (Ot + et IIq(t)Hzﬂ) < _612_4/\(15)V1+£(t7 a(t), a(t)

are valid on the interval [to,t1] (except for the break points). Conditions (A.4) and (A.5) guarantee
that on the interval [tg,t1] the considered solution remains in the domains ||(qT,¢")"|| < A and

[(q*,z")"| < H.
Then we find that

V¥t alt), 4(0)) > V(o alto). (o)) + B uito, 1) for k=0,

V_é(tlaq(tl)aq(tl» P (%'m---%nl—l-i-k)_5 V_é(to,q(to),q(to)) + (:Lé—gw(t(]atl) for k= 172>"' .

Here the values of m = m(ty) and k = k(tg,t1) are determined in the same way as before in the
study of the unperturbed system. Note that 1 (to,t1) = ¥(0,t1) — (stm . . . 36m—14%) (0, t0). Then
one can obtain

(0, t1) (—(a1 D)™ + (4€)/2) < (m -+ 34m11) "0 (0,t0) (— (a2 Do) ™ + (as8)/2) .

The left side of this inequality is positive, while the right side is negative (see conditions (A.3)).
The resulting contradiction shows that the inequality (A.2) must be preserved for all ¢ > ty. Using
the proven property of the solutions of system (12), as well as their continuous dependence on the
initial data, we have the required. The corollary is proved.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 3 2025



STABILITY ANALYSIS OF NON-STATIONARY MECHANICAL SYSTEMS 215

A.2. PROOF OF COROLLARY 3

As in the proof of Corollary 2, let us show that the constants Dy > 0, D > 0 and £ > 0 can be
chosen so that if the initial data of the solution (q(t),q(t)) of systems (12) satisfy the conditions

N 1 . _
o> sl + o) < Do wTE(0, 1), (A7)
then
1. _
50 a1 + la@®)|**" < DE=YE0,8) for ¢ > to. (A.8)
Set the specified constants, according to the conditions
Do <D, —(agcDg) *+€<0, —(a1¢D)™C+¢&>0, (A.9)
DY WA g=2/k=1 (0 t) + Dp(t) UHE(0,1) < A2 for t=i>T, (A.10)
DY WA g=2/(t=1) (0 ¢) + DOVE(0,¢) < H? for t>i>T, (A.11)
max {8, (t); 62(t)} < dy for t>i>T, (A.12)
max {31 (1); 6(t)} < dy for t>1>T, (A.13)

where ¢ = max{ks; c21}, ¢ = min{ky; c11}, H = min{fll; ﬁg}, d1 and dy are positive constants.
Let for the solution (q(t),q(t)) of system (12) inequalities (A.7) be valid. Suppose that there
exists t; > to such that inequality (A.8) turns into equality for ¢t = t;. On the interval [to,t1] the
considered solution remains in the domains ||(q*,¢")T|| < A and ||(q*,2")"|| < H (see conditions
(A.10) and (A.11)). If constant d; in (A.12) is chosen sufficiently small, then, applying Lemma 1
and Jensen inequality, we find on the interval [t,t1] (except for the break points) the estimate

Vi < (= A0+ Aba(1) (51(0) + 52(1)) ) V(0 a(). 4(1))-

Here A is a positive constant (depending on the choice of D). Integrating this differential inequality
on the interval [tg,¢;], one can obtain

V=t qtr),a(t) = V4 (to, qo, éo) + € U(to, t1) — Af/bl(T) (61(7) + 02(7)) dr.

Then we have
W(0,t1) (—(@16D) ¢ +€—2A48ds) < W(0,t0) (— (@28 Do) +¢). (A.14)

If constant dy in (A.13) is chosen sufficiently small, then (see conditions (A.9)) the left side of
inequality (A.14) is positive, while the right side is negative. The resulting contradiction shows
that the inequality (A.8) must be preserved for all ¢ > ty. Using the proven property of the solutions
of system (12), as well as their continuous dependence on the initial data, we have the required.
The corollary is proved.
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